Reveal new secrets about BLACK HOLE and NEUTRON STARS

ABOUT NEUTRON STARS

Neutron stars are ancient remnants of stars that have reached the end of their evolutionary journey through space and time.


These interesting objects are born from once-large stars that grew to four to eight times the size of our own sun before exploding in catastrophic supernovae. After one such explosion blows a star's outer layers into space, the core remains—but it no longer produces nuclear fusion. With no outward pressure from fusion to counterbalance gravity's inward pull, the star condenses and collapses in upon itself.


A Neutron Star Hiding Out Near a Black Hole Is Pelting Earth with Radio Waves




Black hole

black hole is a region of spacetime exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.
Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. The first modern solution of general relativity that would characterize a black hole was found by Karl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by David Finkelstein in 1958. Black holes were long considered a mathematical curiosity; it was during the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality.

See more: Dalai Lama Speaks Language of Science

Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M) may form. There is general consensus that supermassive black holes exist in the centers of most galaxies.
Despite its invisible interior, the presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter that falls onto a black hole can form an external accretion diskheated by friction, forming some of the brightest objects in the universe. If there are other stars orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems, and established that the radio source known as Sagittarius A*, at the core of our own Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.
On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves; because these waves were generated from a black hole merger it was the first ever direct detection of a binary black hole merger. On 15 June 2016, a second detection of a gravitational wave event from colliding black holes was announced.
Thanks to Wikipedia: Black Hole

-------------------
Linked program:
-------------------
-------------------
Tag: Apparitional experience Astral projection Auras Bilocation Clairvoyance Deathbed phenomena Dermo-optical perception Dream telepathy Ectoplasm Electronic voice phenomenon Extrasensory perception Ganzfeld experiment Ghosts Kirlian photography Levitation Materialization Mediumship Near-death experience Orb Out-of-body experience Pam Reynolds case Parapsychology research at SRI Past life regression Plant perception (paranormal) Poltergeist Precognition Psychic Psychic detective Psychic reading Psychic surgery Psychokinesis Psychometry Pyrokinesis Reincarnation Remote viewing Retrocognition Second sight Sensory leakage Spoon bending Telepathy Thoughtography Xenoglossy Zener cards


Thanks to Wikipedia: Black Hole

Reveal new secrets about BLACK HOLE and NEUTRON STARS Reveal new secrets about BLACK HOLE and NEUTRON STARS Reviewed by Secret Century on tháng 1 10, 2018 Rating: 5

Không có nhận xét nào:

Được tạo bởi Blogger.